Меню курса

Урок 5. Опорное число при умножении чисел до 100

Урок 5. Опорное число при умножении чисел до 100Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа. В прошлом уроке, когда показывался способ умножения чисел до 20, по сути мы использовали опорное число 10.

Также стоит отметить, что подробнее вы можете ознакомиться с методикой использования опорного числа в книге "Считайте в уме как компьютер" Билла Хэндли.

Содержание:

Сначала рассмотрим общие правила.

Общие правила использования опорного числа

Опорное число полезно при перемножении чисел, находящихся близко и при возведении в квадрат. Как можно использовать метод опорного числа вы уже поняли из прошлого урока, теперь давайте обобщим все сказанное.

Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100.

Методика использования опорного числа зависит от того, являются ли множители больше или меньше опорного числа. Тут возможны три случая. Покажем, все 3 методики на примерах.

Оба числа меньше опорного (под опорным)

Допустим, мы хотим умножить 48 на 47. Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа.

Чтобы умножить 48 на 47, используя опорное число 50, нужно:

47*48

  1. Из 47 вычесть столько, сколько не хватает 48 до 50, то есть 2. Получается 45 (или из 48 вычесть 3 – это всегда одно и то же)
  2. Дальше 45 умножаем на 50 = 2250
  3. Затем прибавляем 2*3 к этому результату и вуа ля – 2 256!

Схематично в уме удобно представлять приведенную ниже табличку.

50

(опорное число)

48

*

47

(48-3)*50 = 45*50 = 2 250

(или (47-2)*50  = 45*50 вспомните, что умножение на 5 – это тоже самое что деление на 2)

 

2

*

3

+6

Ответ:

 

 

 

2 250 + 6 = 2 256

Опорное число пишем слева от произведения. Если числа меньше опорного, то разница между ними и опорным пишется ниже этих чисел. Справа от 48*47 пишем расчет с опорным числом, справа от остатков 2 и 3 пишем их произведение.

Если использовать упрощенную схему, то решение выглядит так: 47*48=45*50 + 6= 2 256

Посмотрим другие примеры:

Умножить 18*19

20

(опорное число)

18

*

19

(18-1)*20 = 340

 

 

2

*

1

+2

Ответ:

 

 

 

342

Короткая запись: 18*19 = 20*17+2 = 342

Умножить 8*7

10

(опорное число)

8

*

7

(8-3)*10 = 50

 

 

2

*

3

+6

Ответ:

 

 

 

56

Короткая запись: 8*7 = 10*5+6 = 56

Умножить 98*95

100

(опорное число)

98

*

95

(95-2)*100 = 9300

 

 

2

*

5

+10

Ответ:

 

 

 

9310

Короткая запись: 98*95 = 100*93 + 10 = 9 310

Умножить 98*71

100

(опорное число)

98

*

71

(71-2)*100 = 6900

 

 

2

*

29

+58

Ответ:

 

 

 

6958

Короткая запись: 98*71 = 100*69 + 58 = 6 958

Оба числа больше опорного (над опорным)

Допустим, мы хотим умножить 54 на 53. Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа. Но в отличие от предыдущих примеров, эти числа больше опорного. По сути, модель их умножения не меняется, но теперь нужно не вычитать остатки, а прибавлять.

  1. К 54 прибавить столько, на сколько 53 превышает 50, то есть 3. Получается 57 (или к 53 прибавить 4 – это всегда одно и то же)
  2. Дальше 57 умножаем на 50 = 2 850 (умножение на 50 – схоже с делением на 2)
  3. Затем прибавляем 4*3 к этому результату. Ответ: 2862

 

4

*

3

+12

50

(опорное число)

54

*

53

(54+3)*50 = 2 850

или (53+4)*50  = 57*50 (вспомните, что умножение на 5 – это тоже самое что деление на 2)

Ответ:

 

 

 

2 862

Короткое решение выглядит так: 50*57+12 = 2 862

Для наглядности еще ниже приведены примеры:

Умножить 23*27

 

3

*

7

+21

20

(опорное число)

23

*

27

(23+7)*20 = 600

 

Ответ:

 

 

 

621

Короткая запись: Короткая запись: 23*27 = 20*30 + 21 = 621

Умножить 51*63

 

1

*

13

+13

50

(опорное число)

51

*

63

(63+1)*50 = 3 200

 

Ответ:

 

 

 

3 213

Короткая запись: Короткая запись: 51*63 = 64*50 + 13 = 3 213

Одно число под опорным, а другое над

Третий случай использования опорного числа – когда одно число больше опорного, а другое меньше. Такие примеры решаются не сложнее, чем предыдущие.

Умножить 45*52

Произведение 45*52 считается так:

  1. Из 52 вычитаем 5 или к 45 прибавляем 2. В любом обоих случая получается: 47
  2. Дальше 47 умножаем на 50 = 2 350 (умножение на 50 – схоже с делением на 2)
  3. Затем вычитаем (а не прибавляем, как раньше!) 2*5. Ответ: 2 340

 

 

 

2

 

50

(опорное число)

45

*

52

(45+2)*50 = 2 350

 

 

5

 

 

-10

Ответ:

 

 

 

2 340

Короткая запись: 45*52 = 47*50-10 = 2 340

Также поступаем с подобными примерами:

Умножить 91*103

 

 

 

3

 

100

(опорное число)

91

*

103

(91+3)*100 = 9400

 

 

9

 

 

-27

Ответ:

 

 

 

9 373

Только одно число близко к опорному, а другое нет

Как вы уже видели из примеров, опорным числом удобно пользоваться, если даже только одно число близко к опорному. Желательно, чтобы разница этого числа с опорным составляла не более 2-x или 3-х или была равна числу, на которое удобно умножать (например, 5, 10, 25 – см. второй урок)

Умножить 48*73

 

 

 

23

 

50

(опорное число)

48

*

73

(73-2)*50 = 3 550

 

 

2

 

 

-46

Ответ:

 

 

 

3 504

Короткое решение: 48*73 = 71*50 – 23*2 = 3 504

Умножить 23*69

 

3

 

49

147

20

(опорное число)

23

*

69

(3+69)*20 = 1440

 

Ответ:

 

 

 

1 587

Короткая запись: Короткое решение: 23*69 = 72*20 + 147 = 1 587 - чуть сложнее

Умножить 98*41

100

(опорное число)

98

*

41

(41-2)*100 = 3900

 

 

2

*

59

+118

Ответ:

 

 

 

4018

Короткая запись: Короткая запись: 98*41 = 100*39 + 118 = 4 018

Таким образом, с помощью использования одного опорного числа можно умножать большую комбинацию двузначных чисел. Если у вас получается хорошо умножать на 30, 40, 60, 70 или 80 – тогда, вы сможете с помощью этой методики умножать любые числа (до 100 и даже больше).

Использование нескольких опорных чисел

Методика двух опорных чисел заключается в том, что мы сначала делим 88 на 4 и получаем 22, производим умножение 23 на 22 и произведение умножаем снова 4. То есть, мы сначала делим произведение на 4, а потом умножаем на 4. Получается: 23*22 = 250*2+6= 506, а 506*4 = 2024 – это и есть ответ!

Для визуализации можно использовать уже привычную схему. Произведение23*88 считается так:

  1. Записываем удобное опорное число «20» и рядом приписываем множитель 4, с помощью которого можно выразить 80 через 20.
  2. Дальше делаем, как и раньше, пишем, на сколько 23 превышает 20 (3), а 88 превышает 80 (8).
  3. Выше тройки пишем произведение 3 на 4 (то есть 3 на множитель опорного).
  4. К 88 прибавляем произведение 3 на 4 и умножаем на опорное (20), получается 100*20 = 2000
  5. Прибавляем к 2000 произведением 3-х и 8-и. Результат: 2024

 

3*4=12

 

 

 

 

3

*

8

+24

20*4

(опорное число)

23

*

88

(88+12)*20 = 2 000

 

Ответ:

 

 

 

2 024

Короткая запись: 23*88 = (88+3*4)*20 + 24 = 2024

Теперь давайте попробуем умножить 23*88, используя опорное число 100 для 88 и 25 для 23. В этом случае главным опорным числом является 100. А 25 можно записать, как 100:4=25

100:4

(опорное число)

23

*

88

(23-3)*100 = 2 000

 

 

2

 

12

+24

 

 

 

12:4=3

 

Ответ:

 

 

 

2 024

Короткая запись: 23*88 = (23-12:4)*100 + 24 = 2024

Как видим, ответ получается один и тот же.

Способ с использованием двух опорных чисел несколько сложнее, и требует дополнительных действий. Во-первых, вы должны понять, какие 2 опорных числа вам удобно использовать. Во-вторых, нужно совершить дополнительное действие, для поиска числа, которое нужно умножать на опорное.

Эту методику применяйте лучше тогда, когда вы уже достаточно хорошо усвоили умножение с одним опорным числом.

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

Перед тем как начать игру, рекомендуем зарегистрироваться, чтобы результат был сохранен в вашей истории, и вы смогли бы видеть собственный прогресс.

В следующем уроке рассмотрим умножение до 100.

1PRO