ПрограммыКурсыБлогКнигиPRO
Войти
Блог о саморазвитии

Последовательности Рачинского для счета в уме


Для решения знаменитой задачи Рачинского можно также использовать и дополнительные знания о закономерностях суммы квадратов. Речь идет именно о тех суммах, которые называются последовательностями Рачинского. Так математически можно доказать, что следующие суммы квадратов равны:

  • 32+42 = 52 (обе суммы равняются 25)
  • 102+112+122 = 132+142 (сумма равняется 365)
  • 212+222+232+242 = 252+262+272 (что составляет 2030)
  • 362+372+382+392+402 = 412+422+432+442 (что равняется 7230)

Чтобы найти любую другую последовательность Рачинского, достаточно просто составить уравнение следующего вида (обратите внимание, что всегда в такой последовательности справа количество суммируемых квадратов на один меньше, чем слева):

n2 + (n+1)2 =
(
n+2)2

Это уравнение сводится к квадратному уравнению и легко решается. В данном случае «n» равняется 3, что соответствует первой последовательности Рачинского, описанной выше (32+42 = 52).

Таким образом, решение знаменитого примера Рачинского, можно произвести в уме еще быстрее, чем было описано в данной статье, просто зная вторую последовательность Рачинского, а именно:

102+112+122+132+142 = 365 + 365

В итоге уравнение с картины Богдана-Бельского принимает вид (365 + 365)/365, что, несомненно, равняется двум.

Также последовательность Рачинского может пригодиться и для решения других задач из сборника «1001 задача для умственного счета» Сергея Рачинского.